RESEARCH PATHWAY: personal reflections on a career in research
Polly Hudson (Alan Turing Institute) explains how her curiosity about planning knowledge and local community engagement led to new ways to capture and represent 2D, 3D and 4D spatial data about building stocks and urban form. New challenges arise for creating dynamic urban models and platforms: promoting public participation and understanding, use as a planning tool, combining diverse data sources, and simulating the behaviour of building stocks over time.
At university, I studied art and architectural history, although I was always much more interested in learning about how and why places were built, than in artists’ and architects’ lives. This experience encouraged me to ask questions about the process by which ordinary buildings are produced, and the reasons for their construction and form. My interest, as a designer and researcher, is how to create inclusive, interesting, accessible and useful resources on building stocks. This entails harnessing the skills and knowledge from many types of audience.
I grew up in a family involved in medical research which exposed me to the value of international collaboration in scientific research. An important influence was the connection between the diagnosis / treatment of disease and the technological innovation in microscopy that advanced the understanding of biological systems. Realising how buildings could be studied like ‘cells’ using Geographic Information Systems (GIS) was a major turning point in my career. The capture of spatial statistics at cell level on the composition, dynamics and operation of stocks is necessary to understand urban systems. This led to a particular interest in building footprints, both as graphic representations of building ‘cells’, past and present, as geospatial filing cabinets through which diverse types of data can be collated, and as attributes from which other characteristics can be inferred. The Periodic Table and its use of simple 2D graphic to infer properties, structure and reactions of the chemical elements make data has been another source of inspiration. Could the possibilities offered by graphic representation be used to forecast the future dynamic behaviour of stocks?
In 1995 I took a part time job looking at planning applications on behalf of a local conservation group. I decided to produce coloured maps showing the age of buildings in that district, finding it inexplicable that maps of this kind did not already exist. I was also struck by planners’ lack of interest in residents’ views on planning applications or in the impacts of demolition on local communities, when so much knowledge on how local areas operate over time is held by these communities and conservation groups.
I initiated The Building Exploratory charitable trust in London to harness and visualise community knowledge about building stocks. This involved a process of co-creation with local stakeholders to produce a model of local building stocks for free public exhibitions/resource centres, which combined physical and digital tools. This brought together expertise from the arts, humanities and science to explore building construction and design, performance and history. Here I also began to explore the use GIS, and data animations, as a means to rapidly convey information on buildings to the public. Providing users with the ability to zoom down on their homes and access current and historical maps, aerial photography, and streetview images at building level was found to be of exceptional interest to visitors (tested before Google maps became available). Since this time my work has largely focused on the development of spatial data visualisations as a powerful, efficient way to support public engagement in sustainable development.
Experimentation with Steve Evans in the early 2000s, before collaborating again at University College London (UCL), resulted in several projects which informed later work including a 3D digital animation of the demolition and construction of all buildings in a 1km2 area of London, between 1750 and 2010 and an animated history of fossil fuel use in the UK.
In 2014 I commenced a PhD at UCL, initially to look at methods for tracking demolition in the UK. This multidisciplinary academic environment exposed me to an incredibly diverse range of expertise. However, owing to lack of availability of basic data to answer my research question, I instead began to explore the methods and technologies that could capture and visualise data on demolition, and on the composition, quality and short- and long-term dynamics of the building stock. This involved experimenting with the use of building footprint data to help harness and share knowledge. The goal was to allow the public and other stakeholders to see and become involved with building attribute data capture and visualisation for UK cities at cell level, and to seamlessly interlink information on stock composition, performance and dynamic behaviour.
As part of my PhD I began to work on the development the Colouring London prototype platform, collaborating with Tom Russell, the project’s technical architect. The idea was to integrate tools, ethical frameworks and crowdsourcing mechanisms, with the co-creation model and ethical framework developed at the Building Exploratory. This also afforded opportunities to develop an open platform involving multiple sectors, disciplines and stakeholders in supporting the scientific analysis of stocks. Many possible applications for proposed attribute data were identified (e.g. improved retrofit targeting, performance tracking of development teams, more accurate calculations of energy and waste flows, greater transparency within the planning system). However, the initial focus was mainly on the ability of the platform to capture high quality age data for typology location and energy analysis.
Questions began to arise on how a sufficient quality and volume of (current and historical) microspatial data could be produced in order to understand the stock as a complex dynamic system, and to detect underlying rules of operation within stocks. Automated and crowdsourced methods of data capture therefore started to be tested as well as feedback loops between these. These include mechanisms that enable humanities experts to easily translate text-based information and unrecorded knowledge into spatial statistics for scientific use.
The Colouring London project moved to the Alan Turing Institute in 2020 becoming The Colouring Cities Research Programme (CCRP). Its remit is to promote the efficient reproduction of open-source platform code by international academic partners to maximise the volume and quality of building attribute data available at global level. We currently work with an international cohort of academic colleagues to test code across countries, share software engineering skills and knowledge on different aspects of the stock. The goal is to improve the effectiveness and efficiency of platforms.
Challenging questions that still need to be addressed include:
Health inequalities and indoor environments: research challenges and priorities [editorial]
M Ucci & A Mavrogianni
Operationalising energy sufficiency for low-carbon built environments in urbanising India
A B Lall & G Sethi
Promoting practices of sufficiency: reprogramming resource-intensive material arrangements
T H Christensen, L K Aagaard, A K Juvik, C Samson & K Gram-Hanssen
Culture change in the UK construction industry: an anthropological perspective
I Tellam
Are people willing to share living space? Household preferences in Finland
E Ruokamo, E Kylkilahti, M Lettenmeier & A Toppinen
Towards urban LCA: examining densification alternatives for a residential neighbourhood
M Moisio, E Salmio, T Kaasalainen, S Huuhka, A Räsänen, J Lahdensivu, M Leppänen & P Kuula
A population-level framework to estimate unequal exposure to indoor heat and air pollution
R Cole, C H Simpson, L Ferguson, P Symonds, J Taylor, C Heaviside, P Murage, H L Macintyre, S Hajat, A Mavrogianni & M Davies
Finnish glazed balconies: residents’ experience, wellbeing and use
L Jegard, R Castaño-Rosa, S Kilpeläinen & S Pelsmakers
Modelling Nigerian residential dwellings: bottom-up approach and scenario analysis
C C Nwagwu, S Akin & E G Hertwich
Mapping municipal land policies: applications of flexible zoning for densification
V Götze, J-D Gerber & M Jehling
Energy sufficiency and recognition justice: a study of household consumption
A Guilbert
Linking housing, socio-demographic, environmental and mental health data at scale
P Symonds, C H Simpson, G Petrou, L Ferguson, A Mavrogianni & M Davies
Measuring health inequities due to housing characteristics
K Govertsen & M Kane
Provide or prevent? Exploring sufficiency imaginaries within Danish systems of provision
L K Aagaard & T H Christensen
Imagining sufficiency through collective changes as satisfiers
O Moynat & M Sahakian
US urban land-use reform: a strategy for energy sufficiency
Z M Subin, J Lombardi, R Muralidharan, J Korn, J Malik, T Pullen, M Wei & T Hong
Mapping supply chains for energy retrofit
F Wade & Y Han
Operationalising building-related energy sufficiency measures in SMEs
I Fouiteh, J D Cabrera Santelices, A Susini & M K Patel
Promoting neighbourhood sharing: infrastructures of convenience and community
A Huber, H Heinrichs & M Jaeger-Erben
New insights into thermal comfort sufficiency in dwellings
G van Moeseke, D de Grave, A Anciaux, J Sobczak & G Wallenborn
‘Rightsize’: a housing design game for spatial and energy sufficiency
P Graham, P Nourian, E Warwick & M Gath-Morad
Implementing housing policies for a sufficient lifestyle
M Bagheri, L Roth, L Siebke, C Rohde & H-J Linke
The jobs of climate adaptation
T Denham, L Rickards & O Ajulo
Structural barriers to sufficiency: the contribution of research on elites
M Koch, K Emilsson, J Lee & H Johansson
Life-cycle GHG emissions of standard houses in Thailand
B Viriyaroj, M Kuittinen & S H Gheewala
IAQ and environmental health literacy: lived experiences of vulnerable people
C Smith, A Drinkwater, M Modlich, D van der Horst & R Doherty
Living smaller: acceptance, effects and structural factors in the EU
M Lehner, J L Richter, H Kreinin, P Mamut, E Vadovics, J Henman, O Mont & D Fuchs
Disrupting the imaginaries of urban action to deliver just adaptation [editorial]
V Castán-Broto, M Olazabal & G Ziervogel
Building energy use in COVID-19 lockdowns: did much change?
F Hollick, D Humphrey, T Oreszczyn, C Elwell & G Huebner
Evaluating past and future building operational emissions: improved method
S Huuhka, M Moisio & M Arnould
Normative future visioning: a critical pedagogy for transformative adaptation
T Comelli, M Pelling, M Hope, J Ensor, M E Filippi, E Y Menteşe & J McCloskey
Nature for resilience reconfigured: global- to-local translation of frames in Africa
K Rochell, H Bulkeley & H Runhaar
How hegemonic discourses of sustainability influence urban climate action
V Castán Broto, L Westman & P Huang
Fabric first: is it still the right approach?
N Eyre, T Fawcett, M Topouzi, G Killip, T Oreszczyn, K Jenkinson & J Rosenow
Social value of the built environment [editorial]
F Samuel & K Watson
Understanding demolition [editorial]
S Huuhka
Data politics in the built environment [editorial]
A Karvonen & T Hargreaves
Latest Commentaries
5th Anniversary Essays
These commissioned essays from Buildings & Cities' authors and readers explore how the research landscape is changing. New essays are continuously being added to the collection during 2024 as part of B&C's anniversary.
Collectively, these essays offer fresh insights into the processes and issues that are currently inadequate or missing in the built environment research landscape. A wide perspective from different disciplines and geographies creates a positive, collective vision for shaping the research agenda. Recommendations are made for what needs to change.
We hope this will provoke and inspire research funders, researchers and other stakeholders to discuss, reflect and act. Ideas range from systemic change to key research questions to improving engagement to change of focus.
The Challenges of Evidence-Based Design
While some progress has been made, particularly in areas like healing architecture where the impact of design on human well-being is more directly observable, much work remains to be done to extend evidence-based design to broader fields of architecture, urban planning and design. Meta Berghauser Pont (Chalmers University of Technology) explains the challenges and pathways needed for a shift toward evidence-based design in urban planning and urban design.